The Goto numbers of parameter ideals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Goto Numbers of Parameter Ideals

Let Q be a parameter ideal of a Noetherian local ring (R, m). The Goto number g(Q) of Q is the largest integer g such that Q : m is integral over Q. We examine the values of g(Q) as Q varies over the parameter ideals of R. We concentrate mainly on the case where dimR = 1, and many of our results concern parameter ideals of a numerical semigroup ring.

متن کامل

Quasi-socle Ideals and Goto Numbers of Parameters

Goto numbers g(Q) = max{q ∈ Z | Q : m is integral overQ} for certain parameter ideals Q in a Noetherian local ring (A,m) with Gorenstein associated graded ring G(m) = ⊕ n≥0 m /m are explored. As an application, the structure of quasisocle ideals I = Q : m (q ≥ 1) in a one-dimensional local complete intersection and the question of when the graded rings G(I) = ⊕ n≥0 I /I are Cohen-Macaulay are s...

متن کامل

Lyubeznik Numbers of Monomial Ideals

Let R = k[x1, ..., xn] be the polynomial ring in n independent variables, where k is a field. In this work we will study Bass numbers of local cohomology modules H I (R) supported on a squarefree monomial ideal I ⊆ R. Among them we are mainly interested in Lyubeznik numbers. We build a dictionary between the modules H I (R) and the minimal free resolution of the Alexander dual ideal I∨ that all...

متن کامل

Optimal Betti Numbers of Forest Ideals

We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.

متن کامل

Deterministically Computing Reduction Numbers of Polynomial Ideals

We present two approaches to compute the (absolute) reduction number of a polynomial ideal. The first one puts the ideal into a position such that the reduction number of its leading ideal can be easily read off the minimal generators and then uses linear algebra to determine the reduction number of the ideal itself. The second method computes via a Gröbner system not only the absolute reductio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2009

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2008.09.024